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ABSTRACT: We first briefly discuss the relation between black hole thermodynamics and
the entropy function formalism. We find that an equation which governs the relationship
between Sen’s entropy function and black hole entropy, can quickly give higher order cor-
rections to entropy of pure (anti-) de Sitter space without knowing the corrected metric.
We also show that near horizon geometry and the entropy function extremization is no
longer required for pure (anti-)de Sitter space. The entropy of (anti-)de Sitter space and
Schwarzschild-(anti-) de Sitter black holes together with Gauss-Bonnet terms, R? terms
and R* terms are calculated as concrete examples.
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1. Introduction

Recently, Sen in ref. [l introduced the entropy function method to calculate the entropy
of extremal black holes with near horizon geometry AdSs x S™~2 by defining the entropy
of the extremal black hole to be the extremal limit of the entropy of a non-extremal black
hole so that one can use the Wald’s formula for entropy given in [}, fl]. The entropy
function method is an useful approach for computing the entropy from the Wald formula
and it has been generalized to many solutions in supergravity theory no matter extremal
or non-extremal solutions [[]-P9]. Actually, the entropy formula of Wald is based on the
first law of black hole mechanics and it might not work for extremal black holes because
of the vanishing surface gravity and vanishing bifurcation surface. On the other hand,
the entropy function method works for extremal black holes with near horizon geometry
AdS5 x 8™ 2, and it might be difficult to apply this method to non-extremal black holes
or more general conditions. This is because there is a strong hypothesis for the entropy
function method [BQ]: in any general covariant theory of gravity coupled to matter fields, the
near horizon geometry of a spherically symmetric extremal black hole in n dimensions has



SO(2,1) x SO(D — 1) isometry. Apparently, the near horizon geometry of a non-extremal
black hole might not satisfy the above argument.

The purpose of this paper is to compute the entropy in (anti-)de Sitter (dS) space with
higher derivative gravity terms. Basing on the method developed by Cai and Cao [B9), in
this paper, we will show that a simple integration formula can quickly give the entropy of
neutral black holes in dS and AdS spacetime, including the higher derivative corrections
to the entropy. Black holes in dS and AdS sapcetimes are extremely important in many
aspects [B1]. They have special interest from the holographic point of view due to the well
known AdS/CFT correspondence (dS/CFT correspondence) [B2, BJ]. The Hawking-Page
transition for Schwarzschild-AdS (SAdS) black holes plays an important role in AdS/CFT
correspondence where it was interpreted by Witten [BJ] as the confinement-deconfinement
transition in dual gauge theory. In this sense, Schwarzschild-AdS is the important tool to
describe thermodynamics of CFT and give crucial support of AdS/CFT correspondence.

Before going to concrete computation, we first summarize the differences between the
method developed by Sen and the method to be used in this work. In general, the Sen’s
entropy function method is composed of the following three arguments [fll|:

1) For an extremal charged black hole with near horizon geometry AdSs x S"2. The
part of AdSy; metric is deformed into vy (—72dt? + dr?/r?), while the S"~2 part of
the metric has the form vng%_Q. v1 and v are regarded as constant value here.
The deformed metric is assumed as a solution of the equation of motion for a special
action, where gravity is coupled to a set of electric and magnetic fields and neutral
scalar fields .

2) Define an entropy function over the horizon S"~2, which is a function of v; and us,
and the electric and magnetic field (e;, p;).

3) One can find that for given e;, p;, the values us of the scalar fields as well as the sizes
v1 and vy of AdS; and S™~2 are determined by extremizing the entropy function with
respect to the variables ug, v1 and vo. The entropy function at its extremum point
is proportional to the entropy of black holes.

In the following, we can see that for dS and AdS spacetimes:

(i) Extremizing the entropy function is not required. And also, we need not deform the
metric into the near horizon geometry AdSs x S"~2. The configurations of spacetime
can be used directly without any change in calculating the entropy. The near horizon
limit is also unnecessary in obtaining dS entropies including higher derivative gravity
terms.

(ii) We do not need to assume the radii of dS and AdS space as some constants, such as
vy and vy. (One may simply assume these parameters as 1. Actually v1 and v2 are
quite trivial in calculating extremal stringy black hole entropy, because in the end
their values are always 1, for example, see [[[§, B§))

(iii) Especially for pure dS and AdS space, one can still obtain the modified entropy
formula without knowing the solutions of higher derivative gravity.



The organization of this paper is as follows. In next section we give a brief review of
previous work on Noetherian entropy and entropy function. Some useful formulae are
derived from black hole thermodynamics. Section 3 discusses the entropy of pure dS space
using our new method. DS entropy with Gauss-Bonnet correction is calculated in section
4, where we compare our result with the entropy obtained by Wald’s formula. In section
5 we deal with the dS entropy in R? gravity theory. The entropy of black holes in AdS is
investigated in section 6. The R* correction to the entropy is included in this section. The
last section contains our main conclusions and discussions.

2. Brief review of Noetherian entropy and entropy function

In this section, we will briefly review some important results made in the previous
work [[I, B, B9, following the framework of Lagrangian field theories developed by Wald
and viewing the Lagrangian as an n-form L(v), where ¥ = {ga, Raped, Ps, F, L{b} denotes
the dynamical fields considered in this paper, including the spacetime metric g, the cor-
responding Riemann tensor Rgp.q, the scalar fields {®5, s =0,1,--- }, and the U(1) gauge
fields Fl, = 0,A! — 0, AL with the corresponding potentials {AZ, I = 1,---}. Under this
definition, the variation of L is

0L = Ey0¢Y +dO, (2.1)

where © is an (n — 1)-form, which is called symplectic potential form, E, corresponds to
the equations of motion for the metric and other fields. Let £ be any smooth vector field
on the space-time manifold, then one can define a Noether current form as

JE] =0, Leyp) — € - L. (2.2)

The fact that dJ[¢] = 0 will be preserved when the equations of motion are satisfied shows
that a locally constructed (n — 2)-form Q€] can be introduced and an “on shell” formula
can be obtained

JI¢] = dQlg] . (2.3)

Wald’s analysis based on the first law of black hole thermodynamics showed that for general
stationary black holes, the black hole entropy is a kind of Noether charge at horizon [
and can be expressed as

Spi = 2 /H Qe (2.4)

where £ represents the Killing field on the horizon, and H is the bifurcation surface of the
horizon. It should be noted that the Killing vector field has been normalized to have unit
surface gravity.

In fact, we can even go further, the definition of the Noether charge Q[£] can be
extended in an arbitrary manner to ¢ which do not satisfy the equations of motion. By
contrast, we call this the so-called “off shell” form of the Noether charge, which is defined
by the relation [34]

J[¢] = dQ[¢] + £°Ca, (2.5)



where C, is locally constructed out of the dynamical fields in a covariant manner and
C, = 0 reduces to the previous definition (2.J) “on shell”. Noether charge defined in (R.§)
can be written as

with or
,fl...anfz — 8legcflieabal---anfz ; (27)

al

oL
gl"'an72 = _aRabcdv[ng}eabay”an,z . (28)
The “--.” terms are not important for our following discussion, so we brutally drop them

at first. The relevant discussion can be found in a recent paper [R]].

On the other hand, A. Sen observed that the entropy of a kind of extremal black holes
which have the near horizon geometry AdS, x S™ 2 can be obtained by extremizing the
so-called “entropy function” f with respect to the moduli on the horizon [

Spu = 27t = 27 (e;q; — f(U, 0, €,P)) . (2.9)

where f is defined by
f(i,v,ép) = / dz? - - dz"1\/—detgL. (2.10)

Here \/—detgL is the Lagrangian density, expressed as a function of the metric g,,, the
scalar fields ¢, the gauge field strength Fﬁ’) and covariant derivatives of these fields.

It was shown in [f[] that if we denote by £, a deformation of £ in which we rescale all
factors of Riemann tensor R,g,s by ARng4s and define on the near horizon geometry

=/ —det gL, (2.11)

the following relation may be found

Ofr / oL 1 "2 of
M| _ - — o2l 2.12
o |, 5 V/ —det gR,ps T dx dx f—e 9, ( )

where «, 3,7, are summed over the coordinates r and t.

Now following our previous work on black hole thermodynamics and entropy func-
tion [BH] we give an alternative way to calculate the black hole entropy. We consider an
n-dimensional spherically symmetric black hole with the metric in the form of

dr?

2 _ 2 2
ds® = —a*(r)dt +a2(7‘)

+ b (r)dQ2 _,, (2.13)

where a and b are functions of 7, and dQ2_, is the line element for S"~2. Since @ = 0 if ¢
is a Killing vector, we find by integrating over a Cauchy surface C on eq. (2.3)

/CJz—/Cé-Lz/CdQ[é]z/OOQ—/HQ (2.14)



where H denotes the interior boundary, and we have used the Stokes theorem. For an
asymptotically flat, static spherically symmetric black hole, one can simply choose £ =
o = %, then the free energy of the system is shown to be [Bj]

Fog- /H Qie, (2.15)

where F' = TIg with T and Ig the temperature and Fuclidean action respectively. £ in
above formula is the “canonical energy ”, which is defined by [g],

£ = / (Qlf] —tB), (2.16)
where B is an (n — 1)-form given by

s[tB=[ e

The variation of eq. (B.15) leads to

5F — 66 — 5/H Q¢ (2.17)

Now by noting that the Noetherian charge can be decomposed into two parts as shown
in (B.9), we consider a stretched region near the horizon ranged from rg to rg + or,

rg+or
_ F g
5 /H Q¢ = /TH (Q"[¢] + Q7€) (2.18)

The Killing equation gives V[, = 2r€q (Where £ is the surface gravity of the hole), and
the two parts are found to be [B

rg+or
/ QY[0r] = or [WE+ nE'], + 0%, (2.19)
TH
rg+or
/ QF[Z?t] = qreror + erqior + O(0r?). (2.20)
TH

where E(r) is defined as

oL

E(r)=—-
( ) HaRabcd

€ap€cgdr’ -+ - dx" 2. (2.21)

The above formula is exactly the Wald formula for entropy without the factor 27 [g].
Therefore, we find E(r) is related to the entropy by 2rE(ry) = S. e; and the U(1)
electrical-like charges in eq. (B.20) are defined to be

er = Flirn) (2.22)
1 oL
qr = /7—6(11)@ ety AT N - N dxn?
» (n—2)! aFafb ! 2
0 L b 8f(TH)
= [ ey ay pda® A Adatr = ST 2.2
aej /T’H 2(7’L — 2)[6 €ab 1 n—2 x X 86] ( 3)



where we have written F aIb(rH) as er€g. If the near horizon extension rg — rg + or is
also done for the free energy, we find that

B —— =

H

Substituting eqs. (R.19), (£.20) and (R.24) into eq. (R.17), we obtain
for = —SoT, (2.25)

where f = (—f(rg) + grer) is the entropy function for extremal black hole as shown in (R.9),
and we have used the relation 6§ = T9S — ejq’lér.l In the limit 4r — 0, we obtain an
equation which governs the entropy function for non-extremal black holes

ST' = —f, (2.26)

where prime denotes derivative with respect to r.

What we discussed above is the asymptotically flat case. The non-asymptotically flat
case, such as asymptotically dS or AdS cases, however, is proved to be a little different
from the one discussed above due to the definition of the Hamiltonian. By showing the
difference we will start with looking at the Noetherian definition of mass in AdS spacetime.
The definition of Hamiltonian is shown to be [B7]

5H = /R(éQ[f]—S'B)— /R 5(Qaaslé] — £ Baas), (2.27)

where R is a cutoff at an outer boundary. This is unlike the flat case where the integration
occurs at infinity. The second term in (R.27) corresponds to a constant by which we preserve
the fact that the energy is zero in pure AdS. Notice that £% is fixed during the variation,
the spacetime and AdS background should have the same boundary geometry at r = R,
which leads to [£]> = |£|> on the boundary. In the end, taking into account the linear
relation between Q[¢] and £ one obtains the mass of the system [B7]

e~ [@i-iB) <?;;§S) /2] [ @usi—t-Bas). (229

Jit o
where we have taken £ to be the time translation Killing vector since we only consider the

static case.

We know that £ vanishes on the bifurcate horizon hence ® = 0 and the Noether current
simplifies to J = dQ = —¢ - L. Integrating it over a Cauchy surface C with the interior
boundary H as the event horizon of the black hole, and the outer boundary at r = R, we

/HQ[ 5+/§t (98H) / "B+

'More general form of the first law of black hole thermodynamics is 6 = TS + ®;6Q;, where &; =
_gaAﬁ |7 is the electrostatic potential and Qr = fr ﬁ %eabal---an,gdibal A---Adz®~2 is charge. It is

{gé}ds }1/2] /(QAdS [t] =t Buaas)- (2:29)

r=R7E

not difficult to find that in our case, ®; = —er and Q1 = gr. The standard first law hence can be recovered
by using these relations.



On the other hand, one integrates over another Cauchy surface Caqsg to get

[ Quislti=~ [ ¢ Lignas) (2:30)
R Cads
Following the procedures made in last section, we variate above formula, and note
s[ai=[ Q- [ Q=TS+ e +enilor, (231)
H rg+or TH
and
rg+or
5/(§t ‘L+t-B)=—0F = / fdr = f(ry)ér, (2.32)
C Ty
in the end we obtain our final result
gBH 1/2
T8y & ety — () =t — | () | fuas. (2:33)
It =R
where fgg = ejqr — feg and fags = — faqs denote the entropy functions of black hole and

AdS respectively. To obtain the correct entropy we should integrate the right-hand side of
eq. (B.33) with appropriate integration region. A reasonable integration region is shown to

be [B1
R gBH 1/2 R

F:/ fzm — <ﬁ> / fads, (2.34)
TH Gt r—p 0

where F' = £ —T'S+e g} is the free energy of the system. The entropy thus can be obtained
by

In particular, the corresponding expression for pure dS (or AdS) is

TH
TS = / £, (2.35)
0

where rp is the event horizon of dS space. We can show the entropy of dS space in any
R? gravity theories can be computed by?

Lo (0)
S =Sy 4+ S = — (fo + A ) dr, (2.36)

To Jo
where superscript “(0)” denotes the variables computed by using the unperturbative metric,
and fy and f; (including fl(o) and fl(l), see appendix [ for detail) represent entropy function
with and without higher derivative corrections respectively. Both fy and Ty are calculated
by using the unperturbative metric. ~ is a small quanta showing the coupling strength.
This implies one can obtain the entropy of dS spacetime in any R? gravity theories without
knowing the corrected metric. In our present paper, we will confirm this argument by
taking several examples.

2The details can be found in appendix @



3. Entropy of D-dimensional de Sitter spacetime

In this section, we will give a simple example to demonstrate how our method works for
non-supergavity spacetime. We may calculate entropy of pure dS spacetime by using the
method discussed in the last section.

From the traditional point of view, the “entropy function” method may break down
when we apply it to calculating the entropy of dS spacetime due to its non-extremality.
Our analysis in the last section indicates we may end this embarrassed situation of this kind
of space by extending the entropy function to the case including non-extremal spacetime.
The main idea is to relate the entropy function with the black hole thermodynamics with
the help of the entropy definition of Wald, whose definition is valid for any non-extremal
black holes. By doing so, we obtained a formula by which one can compute the dS entropy,

ie.,
[
TS = / fsdr, (3.1)
0

where [ denotes the cosmological radius. The Einstein-Hilbert action with a positive cos-
mological constant is given by

I= ! /dD:E\/—det g(R —27), (3.2)

167G p

where R is the Ricci scalar of the spacetime manifold, A = (D — 1)(D — 2)/2I? is the
cosmological constant, and Gp is the D-dimensional Newton constant. The corresponding
static metric is given by

-1
ds* = — 1—ﬁ dt* + 1—7"—2 dr? + r2dQ3 (3.3)
B 12 12 bz ‘

Recalling the definition of f in (2.1(}), we obtain

(D—1)x"2 rP=2
fas = — . (3.4)
4G pT (251

The temperature for D-dimensional dS spacetime is

1
3 (3.5)
Direct calculation of eq. (R.35) gives the entropy of dS spacetime
A 1P=2Ap_
Sas = = D2 (3.6)

4Gp 4Gp

where Ap_o = 27(P=V/2/T((D — 1)/2) is the area of the (D — 2) dimensional unit
sphere. (B.6) is exactly the Bekenstein-Hawking entropy of dS spacetime. This indicates
that our method discussed in section 2 works well for dS space.



4. Entropy with Gauss-Bonnet term in de Sitter space

In this section, we wish to confirm our argument made in section2, i.e., one can obtain the
entropy of dS spacetime in any R? gravity theories without knowing the corrected metric.
In particular, we shall consider a specific higher derivative correction to the action —
the Gauss-Bonnet term. This term, which is generated from the heterotic and bosonic
string theory low energy effective theory, is a natural correction term to the Einstein-
Hilbert action (B.3). It corresponds to an additional term in the Lagrangian density of the
form B3

Lap = % {Ryypo R"P" — 4R, RM + R?} | (4.1)

where « is the coupling constant with dimensions (length)?. In particular, a« = o'/4 in
the low energy effective action of heterotic string theory. Then the action containing the
Gauss-Bonnet term becomes [BY]

1
I= /de\/—det g(R—2A+ LgB) - (4.2)

167G p

The corresponding equation of motion is [B6

1 (D—1)(D—2)
R;w - §Rg,uz/ + 92 Juv =
ol loros—2 <R RY%Y _2R%PR .5 — 2R%Ryu + RR ) (4.3)
2 ur~GB paByLty uow3 ptlva ny .

4.1 Entropy function method

We wish to find the leading order correction in « to the entropy of the dS spacetime. Usu-
ally, before we do this, we should first obtain the corresponding solutions to the modified
Einstein equation ([l.3). This, however, turns out to be not so easy except for some special
cases. Fortunately, the entropy function method provides us with an elegant way to cal-
culate the entropy of higher derivative gravity without knowing the corrected metric. The
Gauss-Bonnet term corresponding to the metric (B.3) is then given by

D(D—1)(D —2)(D = 3)a
167G pl4 '

The definition of f in (R.10) shows Lagrangian density with higher derivative correction
gives unavoidably an extra term of f. In Gauss-Bonnet Einstein gravity, this term comes

Lp = (4.4)

from the Gauss-Bonnet term as shown in ({.4). This in turn will change the expression of
entropy function as defined in previous section. Direct computation shows the correction
term to the entropy function (B.4) is

ficp = —fap = — | dP2x\/—detgLap

_aD(D-1)(D-2(D-HAp s ;.
167G pl4 '

(4.5)

3What we should mention is that we require D > 5 in this case since the Gauss-Bonnet term is a
topological invariant in four dimension.



Substituting this into entropy function equation (R.3(f), we can easily obtain the entropy
generated by Gauss-Bonnet correction term

Jifigedr  aD(D —2)(D —3)Ap_s 4
SigB = = =

4.
T 8Gp (46)

Hereafter we do not distinguish 7" from 7j. Consequently, the entropy of dS space (near
the horizon) including Gauss-Bonnet correction becomes

IP=2Ap_ D(D —2)(D -3
S = Sas + Si6B = D2 (142 ( 2)( ) +0(a?). (4.7)
4Gp 21

4.2 Wald’s approach

In this subsection, we wish to check our result ([l.7) obtained by entropy function method.
One way is to use the Wald’s approach. To do this, we have to find the corrected metric
of the modified equation of motion ([.3) before we compute the corrected entropy of the
Gauss-Bonnet gravity. Generally speaking, it is not easy to obtain the solution of this
equation of motion. However, in some special cases, we can find the exact solution. Now
we assume the metric to be of the form as discussed in [B]

ds? = —e¥dt? + ePNdr® + r2d0% _,, (4.8)

where v(r) and A(r) are functions of r only. The solution under this assumption is shown

to be [BY]
2 ~
2 —on _ r [, 4o

where & = (D —3)(D —4)a. As shown in [Bg, B], the branch with the “+” sign is unstable

7

and the graviton is a ghost. Therefore we only consider the case with “—” sign in this

paper. Consequently, the metric becomes

2 ~
% oA r 4a
= =14+—11—1/14+—=1. 4.10
e e + % < + 2 ) ( )

Since the horizon of this geometry occurs where e?” = 0, we find the event horizon radius

1/2
o 2%
T \VTrda/Z -1

— 1+ % +0(a). (4.11)

One may expect that we can obtain the Bekenstein-Hawking entropy by direct substi-
tuting ([.1T) into the entropy-area formula Spy = % This, however, has been proved to
be no longer true by a lot of earlier investigations [£0]. It was shown in [[]] that S should
take the form of a geometric expression evaluated at the event horizon. There are many
ways to calculate the entropy of this spacetime: one way is to use the Wald’s formula [{2)];
the other is related to the Euclidean entropy of the space as shown in [B7, ). It also can

— 10 —



be obtained by assuming the spacetime satisfies the first law of thermodynamics as shown
in [l4]. As an example, we use Wald’s approach to check our method obtained in the last
subsection. Using the Wald’s formula, we know that the entropy of a hole valid to any
effective gravitational action including higher curvature interactions is given by [i2]

1 -
Swdd:jﬁzgj;dndm¢ﬁ[l+2aRUU}, (4.12)

where h;; is the induced metric on the horizon,* and R(h) = h¥ hklRikjl is the Ricci scalar
calculated by using the induced metric h;;. The entropy calculated in this way is proved

to be [

S _ 7‘12_2AD_2 1 4 2(D — 2)6&
4Gp (D —4)r%,
IP=2Ap_5 D(D — 2)a ~2
~ 4Gp <1 2(D — 4)I2 ) o@)
lD_2AD_2 D(D — 2) D — 3)a 2
=G, <1 + 52 > + O(a?), (4.13)

which is exactly the same as entropy ([.7) obtained by the entropy function method.
Therefore we conclude that, compared with other methods (such as the entropy function
method proposed by Sen and the Wald’s approach), our method has many advantages.
Roughly speaking, they are:

(i) Unlike the standard entropy function method, we do not need to extremize the en-
tropy function, and also, we need not deform the metric into the near horizon ge-
ometry. The configurations of spacetime can be used directly without any change in
calculating the entropy. The near horizon limit is also unnecessary.

(ii) Unlike the standard entropy function method, we do not need to introduce some
constants into the metric, such as v; and wvs.

(iii) Unlike the Wald’s approach or Euclidean approach [B7], we do not need to know the
corrected metric of higher derivative gravity for dS space.

5. Entropy with R? term in de Sitter space

In this section, we consider R? term which involves a correction proportional to
R0 R*Y o This term, which is the first term that one can add to the Einstein-Hilbert
action, has been discussed in several previous works [B7, i) It corresponds to an additional
term in the Lagrangian density of the form [B4]

(07

Lre = 167G p Ryarpo

R, (5.1)

4In present case, hi; denotes the metric of sphere sP-2,

— 11 —



where again « is the coupling constant with dimensions (length)?, and a = o/ /4 in the low
energy effective action of heterotic string theory. The action containing this term becomes

1
I= /dD:E\/—det g(R—2A+ Lg2) . (5.2)
167G p

The corresponding equation of motion is [B7]

R D—-1)(D -2 «
R/u/ - gﬂl/ + ( 2)1(2 )glf«l/ - §gMVﬁR2 — 2« <RHQIBVR36PY + 2RQIBRH‘O‘V'B

1
~2R5Ryo +20R,, = 5(V,Vy + V,,V,JR). (5.3)

5.1 Entropy function method

In this subsection, we evaluate the R? correction to the entropy of the dS spacetime. As
mentioned in the last section, we do not need to know the modified metric before compute
the corrected entropy by using the entropy function method. Therefore we start with
calculating the R? term corresponding to the uncorrected metric (B-3)

D(D - 1)a

Lre = StGplt

(5.4)
The definition of f in (R.10) shows Lagrangian density with higher derivative correction
gives unavoidably an extra term of f which comes from the R? term as shown in (f.4).
This in turn will change the expression of entropy function as defined in previous section.
Direct computation shows the correction term to the entropy function (B-4) is

O[D(D - 1)AD_2 TD_2

f1R2 - — 87TGDZ4 (55)

Substituting this into eq. (R.3(), we can easily obtain the entropy function generated by

R? correction term
OZDAD_Q lD_4

Sipe = 1Go (5.6)
Consequently, the entropy of dS space including R? correction becomes
1P=2Ap_ D
S =Sqs+ Sype = ——2=2 1+Oé—2 + 0(a?). (5.7)
4Gp l

5.2 Wald’s approach

In last subsection, we have calculated the corrected entropy for dS space by using entropy
function method. To confirm our result, we now appeal to Wald’s approach. To do this, we
should first find the corrected metric of the modified equation of motion (f.3). Generally
speaking, it is not easy to obtain the solution of this equation of motion. However, in some
special case, we can find a perturbative metric solution. Now we assume the metric to be
of the form

ds? = —e¥dt? + ePNdr® + r2d0% _,, (5.8)

— 12 —



where v and A are functions of r only, and have the form

eV — 62”0(1 + ae(r)),

e = 720 (1 + au(r)), (5.9)

where €20 =1 —72/I?, ¢(r) and u(r) are some undetermined functions of r, which can be
obtained by evaluating the equation of motion (f.3)) perturbatively. The result reads

oy 2(D — 4)r?
— _ 2u,
e(r)=—u(r)=e om. (5.10)
Consequently, the metric becomes
2 2
9 _ox r 20(D — 4)r
= =14 =" 7 5.11
© = 2T T (5-11)
Since the horizon of this geometry occurs where e?” = 0, we see
B l
"H = | _ 2(0—%a
D)=
(D —4)a 2
= — . 12
l—l—(D_2)l+(9(oz) (5.12)

Using the Wald’s formula, we know that the entropy of a hole valid to any effective gravi-
tational action including higher curvature interactions is given by [

Swaid = ﬁ /H dP25\/ [1 + 20 (R — 2hiIRy; + R(h))] : (5.13)

where again R(h) = h I kRikﬂ. Direct computation shows

Jr 2)2(D i) O(w) (5.14)

TH
hIR;; = (D= 132@ =2, O(a) (5.15)
R = w +O(w). (5.16)

Therefore, the entropy calculated in this way is

o _ T Ap [1+2a{(D_2)(D‘3) (D —1)(D —4) H

4G p r%{ 12
IP=2Ap_ 5 (D —4)a 4o 9
lD_2AD_2 D« 9

which is exactly the same as entropy (p.7) obtained by the entropy function method.

- 13 —



6. Black hole Entropy in 5—dimensional (anti-) de Sitter space

In previous sections, we investigate the entropy function for pure dS space by using a
powerful method developed in [BJ]. We showed that entropy obtained by this method agrees
with the one computed by other approaches (say, Wald’s approach) very well. Moreover,
for that case we can obtain the correct entropy with higher derivative corrections without
knowing the modified metric. A question is that what will happen if there is a black hole
in the dS (or AdS) background. How to calculate the entropy of this case especially when
there are higher derivative corrections? In this section, we try to answer this question by
applying our method to a 5-dimensional black hole in the Type IIB string theory. We
will show that, although it is no longer possible to obtain the entropy without knowing
the modified metric when higher curvature corrections are included, our method is still
applicable to this case.

6.1 Entropy of Schwarzschild-AdS and Schwarzschild-dS black hole

The 5—dimensional IIB superstring effective action which is obtained by compactifying the
ten dimensional action on the S° is [4g]°

1
I = Sry/— —2A]. 1
167TG5/d3:\/ del g [R — 2A] (6.1)

We first pay our attention to the Schwarzschild-AdS black hole. In the throat approx-
imation, r < [, a solution corresponding to the AdS black hole is [[j, d]

r2 P4 12 A\ 1
ds® = — [— (1 — —0> dat* + dfz] + -AdS < - —0> dr? (6.2)
l r4 r2 r4
AdS
The Lagrangian corresponding to this metric reads
1
L=———5—. 6.3
Therefore the entropy function can be obtained by its definition
3 - ‘/37‘3
fpn = —fen = — [ &°T\/—det gL = ———, (6.4)
27TG5lAdS

where V3 = [ d3% is the volume. On the other hand, the entropy function for pure AdS
background is given by

o Var3
fags = — [ d°F\/—det gaasLads = =—r— (6.5)

27TG5lidS ’

which is the same as the one of the black hole. Therefore from eq. (R.34) we obtain the
free energy of the system (Note that in present case, ry = r¢)

R gBH 1/2 R
F = / fBH - < de> / fAdS7 (66)
o Gt i 0
Vard
o~ . 6.7
167TG5lidS ( )

5We have set the dilaton to a constant and we omit it in this paper.
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According to the definition (R.2§), the ADM energy in this case is given by [B7]

&= /RQ /QAds (6.8)

BH \ 1/2
= /Rdsab\/ —det gQ* — [(;st> ] /Rdsab\/ —det gaasQing,  (6.9)
i —F

where
K

ab __
@ = 87G5’

and Kk = (l% + 2—73) ‘7‘=T0 is the surface gravity of the black hole. In the end we obtain

3Varg
— 2% (6.10)
The temperature at the horizon for this black hole AdS spacetime is
T=—2 (6.11)
Tlaas
Therefore using the relation
TS =€ -F, (6.12)
we obtain the entropy of Schwarzschild-AdS black hole
Varg
S=—=0 6.13
4G5l3AdS ( )

This is exactly the Bekenstein-Hawking entropy for this black hole [B7].
It is not difficult to check that following the above procedure, we can obtain the entropy

of the Schwarzschild-dS black hole. The result is proved to be the same form as the one
for the Schwarzschild-AdS black hole, i.e.,

_ Vg
4G5l

(6.14)

6.2 R* correction to the entropy

In this subsection, due to the AdS/CFT (or dS/CFT) correspondence, we wish to study the
corrections that appear in the Type IIB string theory. These corrections to supergravity
action come from string theory tree-level scattering amplitude computations. R* term
is the first higher order gravity correction terms in IIB action. We may focus on this
correction term. It corresponds to an additional term in the action (f.1])

5/
167TG5 dPx/—det g[R— 2\ + yLp] (6.15)

where v = %C (3)(«’)3, and the correction term in the Lagrangian density is of the form

1
Lgi = CMEC 0 a O PC g + §0hkm"0pqmn0h’“spcqu, (6.16)
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where Cpgmn is the Weyl tensor.
First we calculate the entropy of Schwarzschild-AdS black hole with R* correction.
Using the metric (B.9) one can compute £ s

18076
T lAds
In this case, the modified metric reads [
2
ds® = —e?dt? + e dr® + —di?, (6.18)
lAds
where
2 4 15 4
P = ( = T—i) [1 — o (5 4 B — 37»3)] , (6.19)
AdS r Ads”
2 4\ —1 4
15
2 — l;"_ ( - r-i) [1 + lﬁ%(w + 5rird — 197«3)] . (6.20)
AdS r Ads”

Therefore the correction term to the entropy function reads

30vV3 7‘(1]2 37‘8‘
f = — 8+ — 1. 6.21
LBH 4Gy 1L + r4 (6.21)

The R* correction does not change the metric of the AdS background,® so the correction
of AdS entropy function is vanishing, i.e., fj 495 = 0. After letting R — oo we find the
expression of the free energy

R gBH 1/2 R
F =/ feH — (%ﬁ) / fadss (6.22)
ro 9t ~J0

r=R
4
~ V3T <1 757) (6.23)
167Gslhs \ | 18

On the other hand, the temperature of the hole is

_f |l __To 15y
I (0 R

= 2 6
=ro Tlxas Ixas

SGenerally speaking, to obtain the modified metric, one should first variate the action and obtain the
equations of motion, which take the form

1
R — ig;wR + Aguw = 'YT;izf/f:

where Tﬁf,f are constructed by Weyl tensor in present case. The modified metric is then given by solving

these equations of motion. To the first order, we substitute the unperturbative metric into R.H.S of the
equations. For pure AdS and dS metric, it is not difficult to check that all components of the Weyl tensor
and hence Tf;f,f are vanishing. This implies the AdS metric is unchanged when R* correction is included.
This is also confirmed in [@], where they calculate the black hole entropy using Euclidean approach and
state that the action of AdS background I is unchanged when R* is considered.
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Direct computation shows the corrected entropy of Schwarzschild-AdS black hole with R*

corrections is
oF

3
_ Vi”go (1 + i,ofy> : (6.26)
4G5lAdS lAdS

This is exactly the entropy of this case as shown in [B7].

Again one can obtain the entropy of the Schwarzschild-dS black hole using the same
procedures above. Compared with the result for the case without higher corrections, the
entropy of the Schwarzschild-dS black hole with R* corrections is different from the entropy
of the case for Schwarzschild-AdS black hole. In present case, the entropy is

Varg 60y
S = 1——. 6.27
1Gyld, ( N (6.27)

7. Conclusions

In summary, we have discussed higher order corrections to black hole entropy in dS and
AdS spaces. We started from pure dS and AdS spaces and we have found that even when
the higher curvature corrections are included, the corrected entropy for dS space can still
be calculated by using the equation (T'S)’ = —f. The entropy function method and Wald’s
approach in calculating the entropies of dS and AdS spaces agree with each other. As
we have described, the agreement between these two approaches can be understood, from
black hole thermodynamics [B3).

Although we do not know the general near horizon geometry of non-extremal black
holes in higher derivative gravity theory, our results demonstrate that extending the entropy
function formalism to pure dS (AdS) space is safe. However, we do not find an universal
way to generalize the entropy function to more complicated cases, such as non-extremal and
rotating black holes. For these cases one need first find that the symmetries of the near
horizon geometry for non-extremal and rotating black holes in higher derivative gravity
theory.

Note that the method used in this work is quite different from the standard entropy
function method used in ref. [l], [[] in that the entropy is obtained without extremizing
the entropy function. Since there are no free parameters, such as v; and us, whose values
should be determined by extremizing the entropy function, the extremizing process is
unnecessary. And also, the near horizon limit is not done for (anti-) de Sitter metric.
The reason is because that for the dS and AdS metric, the metric configuration is not so
complicate as stringy black hole metric.
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A. de Sitter entropy in R? gravity theories

In this appendix we consider the entropy for pure de Sitter spacetime with “higher deriva-
tive” gravity. The entropy of this case has been shown to be given by (R.39)

rH
TS = / £5dr, (A.1)
0

where 75 is the event horizon of dS space. For R%-gravity with cosmological constant, the
general action is given by

S = / dPz/=g {R — 2A + aR? + bR, R" + cRyupe R*77 } . (A.2)
Variation over the metric g, yields the equations of motion as shown in i)
R — % g (@B + bRy R + cRyyeg RS + R — 2A) (A.3)
—a(—2RR" + V'V"R + V"VF'R — 2¢""V ,V’R)
—b {% (VEVYR+ VYVHR) — 2R*Y R,, — OR" — %g’“’DR}
—c (—2R“p‘”R”MT — 40RM + VAVYR + V'VFR
—4RM" Ry + 4R“pR””) = 0.

We may expect that the modified metric of dS space takes the form

742

2

2

-1
(1+ 0)} dt* + [1 Ty 0)} dr?® 4+ r2dQ% _,, (A.4)

2 _
ds-—[l— B

where C is a constant which should be determined later. With this metric ansatz, we
obtain an equation of C' by substituting the metric into eqgs. ([A.3)
[D(D —1)a+ (D — 1)b+ 2¢)(D — 4)C?
+{2[D(D — 1)a + (D — 1)b+2c|(D — 4) + (D — 2)I*}C
+D(D —-1la+ (D —-1)b+2¢(D—-4) =0. (A.5)

Straightforward computation gives

O _1— (D —2)I?
N 2[D(D — a+ (D —1)b+ 2c)(D — 4)
AID(D —1)a+ (D —1)b+ 2c|(D — 4)
{1¢\/1—|— R . (A.6)
In particular, as we consider the Gauss-Bonnet combination, i.e., a = ¢,b = —4c¢, we have
12 \/ 4(D —3)(D —4)c
C__1_2(D—3)(D—4)c{1:F 1+ 2 , (A.7)

— 18 —



which agrees with the result obtained in [BY].

Now it is safe to claim that dS space in R? gravity theories has a modified metric in
the form of ). In the following we will show that one can obtain the dS entropy in any
gravity theories with modified metric in the form of (A.4) without knowing the corrected
metric. In order to have a clear picture, we rewrite the metric ([A.4) as

2

2 r
o i

(1+ ’yC)] dt* + [1 - %(1 + ’yC)] dr® 4 r2dQ% _,, (A.8)

where 7 is the coupling strength, denoting a, b, ¢ for R? gravity theory, and C is any
constant. In any higher derivative gravity theories, it is safe to expand T', S and f in the
following way

T =Ty +~T1 + O(?), (A.9)
S =Sy +7S1 + O(?), (A.10)
f=fy+~f +0(?). (A.11)
So from (P.35) we have

(0) ROBN 0

H H H H
ToSo + v(TpS1 + T1So) = / fodr + /(0) fodr + ’Y/ fidr, (A.12)

0 r 0

H

(0)

where ;" corresponds to the horizon of dS space in the case without the higher derivative,
while 7‘2) is the first order correction to the horizon when higher derivative is considered.
This implies the horizon for higher derivative gravity is rgy = rg) + 77“2) + 0(?). In

particular, if the modified metric has the form as shown in ([A.§), we have Tg) = [ and

rg) = —g. Then T} can be evaluated as
o
T = . Al
1= 5 (A.13)

Note that f; includes two parts: one comes from the Hilbert-Einstein action (i.e., the
Ricci scalar) evaluated by the modified metric ([A.§), here we denote it by fl(l); the other
corresponds to the R? gravity term calculated by unperturbative metric, we use fl(o) to
distinguish it from the first one.

For de Sitter spacetime, we have

o lD_2AD_2 £ (D — 1)AD_27’D_2 f(l) D(D — 1)éAD_2TD_2 ‘

Sy= ——— <= - — - _
0 iGp 871G pl2 i 167G pl2
It is not difficult to show
rg))-l-’yrg) 7’(}?) )
~T1Sy = /(O) fodr + 7/0 £, dr. (A.14)
TH

Therefore eq. (B.6) shows that the entropy for dS space in higher derivative gravity theory
can be computed by

Lo 2 o
S=5+v5=— fodr + ~ f,7dr 5. (A.15)
To | Jo 0

— 19 —



References

A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity,

R.M. Wald, Black hole entropy is the Nother charge, [Phys. Rev. D 48 (1993) 3427

T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, [Phys. Rev. D 49 (1994) 6587

V. Iyer and R.M. Wald, Some properties of Néther charge and a proposal for dynamical black
hole entropy, [Phys. Rev. D 50 (1994) 844 [gr-qc/9403029];

T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity,

M. Visser, Dirty black holes: entropy versus area, |Phys. Rev. D 48 (1993) 583

A. Sen, How does a fundamental string stretch its horizon?, JHEP 05 (2005) 059

A. Sen, Stretching the horizon of a higher dimensional small black hole, JHEP 07 (2005) 079

B. Sahoo and A. Sen, BTZ black hole with Chern-Simons and higher derivative terms,

B. Sahoo and A. Sen, Higher derivative corrections to non-supersymmetric extremal black
holes in N = 2 supergravity, JHEP 09 (2006) 029 [hep-th/060314d].

B. Sahoo and A. Sen, o’-corrections to extremal dyonic black holes in heterotic string theory,

J.R. David and A. Sen, CHL dyons and statistical entropy function from D1-D5 system,

P. Prester, Lovelock type gravity and small black holes in heterotic string theory, JHEP 02

M. Alishahiha and H. Ebrahim, Non-supersymmetric attractors and entropy function,

M. Alishahiha and H. Ebrahim, New attractor, entropy function and black hole partition

B. Chandrasekhar, S. Parvizi, A. Tavanfar and H. Yavartanoo, Non-supersymmetric
attractors in R? gravities, JHEP 08 (2006) 004 [hep—th/0602029].

G. Exirifard, The o/ stretched horizon in heterotic string, |[JHEP 10 (2006) 07(

B. Chandrasekhar, Born-Infeld corrections to the entropy function of heterotic black holes,

A. Ghodsi, R* corrections to D1D5p black hole entropy from entropy function formalism,

[1]
VHEP 09 (2005) 03§ |hep-th/0506177].
2]
[Er-qc/930703§);
[er-qc/9312023;
F=qc/5502009
3]
[hep-th/9303029.
[4]
[hep-th/0411255).
[5]
[hep-th/0505122).
(6]
07 (2006) 009 [hep-th/0601224].
(7]
(8]
[JHEP 01 (2007) 010 [hep-th/0608187.
[9]
VHEP 11 (2006) 072 [hep-th/0605210].
[10]
(2006) 039 [kep-th/0511304).
[11]
03 (2006) 003 [hep-th/0601016].
[12]
function, YHEP 11 (2006) 017 [nep-th/060527d].
[13]
[14]
[lhep-th/0604021].
[15]
[Braz. J. Phys. 37 (2007) 349 |hep-th/060402§].
[16]
[Phys. Rev. D 74 (2006) 124026 [hep-th/0604104].
[17]

A. Sinha and N.V. Suryanarayana, Ezxtremal single-charge small black holes: entropy function
analysis, |Class. and Quant. Grav. 23 (2006) 3305 [hep-th/0601183.

— 20 —


http://jhep.sissa.it/stdsearch?paper=09%282005%29038
http://arxiv.org/abs/hep-th/0506177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3427
http://arxiv.org/abs/gr-qc/9307038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C6587
http://arxiv.org/abs/gr-qc/9312023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C846
http://arxiv.org/abs/gr-qc/9403028
http://arxiv.org/abs/gr-qc/9502009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C583
http://arxiv.org/abs/hep-th/9303029
http://jhep.sissa.it/stdsearch?paper=05%282005%29059
http://arxiv.org/abs/hep-th/0411255
http://jhep.sissa.it/stdsearch?paper=07%282005%29073
http://arxiv.org/abs/hep-th/0505122
http://jhep.sissa.it/stdsearch?paper=07%282006%29008
http://jhep.sissa.it/stdsearch?paper=07%282006%29008
http://arxiv.org/abs/hep-th/0601228
http://jhep.sissa.it/stdsearch?paper=09%282006%29029
http://arxiv.org/abs/hep-th/0603149
http://jhep.sissa.it/stdsearch?paper=01%282007%29010
http://arxiv.org/abs/hep-th/0608182
http://jhep.sissa.it/stdsearch?paper=11%282006%29072
http://arxiv.org/abs/hep-th/0605210
http://jhep.sissa.it/stdsearch?paper=02%282006%29039
http://jhep.sissa.it/stdsearch?paper=02%282006%29039
http://arxiv.org/abs/hep-th/0511306
http://jhep.sissa.it/stdsearch?paper=03%282006%29003
http://jhep.sissa.it/stdsearch?paper=03%282006%29003
http://arxiv.org/abs/hep-th/0601016
http://jhep.sissa.it/stdsearch?paper=11%282006%29017
http://arxiv.org/abs/hep-th/0605279
http://jhep.sissa.it/stdsearch?paper=08%282006%29004
http://arxiv.org/abs/hep-th/0602022
http://jhep.sissa.it/stdsearch?paper=10%282006%29070
http://arxiv.org/abs/hep-th/0604021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=BJPHE%2C37%2C349
http://arxiv.org/abs/hep-th/0604028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C124026
http://arxiv.org/abs/hep-th/0604106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C3305
http://arxiv.org/abs/hep-th/0601183

[18] A. Sinha and N.V. Suryanarayana, Two-charge small black hole entropy: string-loops and
multi-strings, |[JHEP 10 (2006) 034 [hep-th/060621§)].

[19] D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors,

10 (2006) 05§ [hep-th/0606244].

[20] G.L. Cardoso, V. Grass, D. Liist and J. Perz, Extremal non-BPS black holes and entropy
extremization, JHEP 09 (2006) 07§ [hep-th/0607209].

[21] J.F. Morales and H. Samtleben, Entropy function and attractors for AdS black holes,

10 (2006) 074 [hep-th/0608044].

[22] D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole
thermodynamics, hep-th/0611140];
D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli flow and non-supersymmetric
AdS attractors, |JHEP 04 (2008) 074 [rrXiv:0711.0036];
D. Astefanesei and H. Yavartanoo, Stationary black holes and attractor mechanism,

Phys. B 794 (2008) 13 [rrXiv:0706.1847].

[23] B. Chandrasekhar, H. Yavartanoo and S. Yun, Non-supersymmetric attractors in BI black
holes, [Phys. Lett. B 660 (2008) 399 [hep-th/061124(].

[24] G.L. Cardoso, B. de Wit and S. Mahapatra, Black hole entropy functions and attractor
equations, JHEP 03 (2007) 085 [hep-th/0612225].

[25] R.-G. Cai and D.-W. Pang, Entropy function for 4-charge extremal black holes in type IIA
superstring theory, [Phys. Rev. D 74 (2006) 064031| [hep-th/060609¢g].

[26] R.-G. Cai and D.-W. Pang, On entropy function for supersymmetric black rings, JHEP 04

(2007) 027 [hep-th/0702044];

R.G. Cai, C.M. Chen, K. Meada, N. Ohta and D.W. Pang, Entropy function and university
of entropy-area relation for small black holes, prXiv:0712.4212.

[27] R.-G. Cai and D.-W. Pang, Entropy function for non-extremal black holes in string theory,
VHEP 05 (2007) 029 |hep-th/0701158].

[28] M.R. Garousi and A. Ghodsi, On attractor mechanism and entropy function for non-extremal
black holes/branes, |JHEP 05 (2007) 043 [hep-th/0703260|; On attractor mechanism and
entropy function for non-extremal black holes/branes, JHEP 05 (2007) 043 [hep-th/070326(].

[29] R.-G. Cai and L.-M. Cao, On the entropy function and the attractor mechanism for
spherically symmetric extremal black holes, [Phys. Rev. D 76 (2007) 06401
[erXiv:0704.1239].

[30] A. Sen, Black hole entropy function, attractors and precision counting of microstates,
brXiv:0708.127d.

[31] S.P. Kim and D.N. Page, Schwinger pair production in dSs and AdSs, prXiv:0803.2555.
[32] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity,

Theor. Math. Phys. 2 (1998) 231| [Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/971120(];

E. Witten, Anti-de Sitter space and holography, [Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/980215(];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from mon-critical
string theory, |[Phys. Lett. B 428 (1998) 109 [hep-th/9802109;

O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,
string theory and gravity, [Phys. Rept. 323 (2000) 183 [hep-th/9905111].

— 21 —


http://jhep.sissa.it/stdsearch?paper=10%282006%29034
http://arxiv.org/abs/hep-th/0606218
http://jhep.sissa.it/stdsearch?paper=10%282006%29058
http://jhep.sissa.it/stdsearch?paper=10%282006%29058
http://arxiv.org/abs/hep-th/0606244
http://jhep.sissa.it/stdsearch?paper=09%282006%29078
http://arxiv.org/abs/hep-th/0607202
http://jhep.sissa.it/stdsearch?paper=10%282006%29074
http://jhep.sissa.it/stdsearch?paper=10%282006%29074
http://arxiv.org/abs/hep-th/0608044
http://arxiv.org/abs/hep-th/0611140
http://jhep.sissa.it/stdsearch?paper=04%282008%29074
http://arxiv.org/abs/0711.0036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB794%2C13
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB794%2C13
http://arxiv.org/abs/0706.1847
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB660%2C392
http://arxiv.org/abs/hep-th/0611240
http://jhep.sissa.it/stdsearch?paper=03%282007%29085
http://arxiv.org/abs/hep-th/0612225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C064031
http://arxiv.org/abs/hep-th/0606098
http://jhep.sissa.it/stdsearch?paper=04%282007%29027
http://jhep.sissa.it/stdsearch?paper=04%282007%29027
http://arxiv.org/abs/hep-th/0702040
http://arxiv.org/abs/0712.4212
http://jhep.sissa.it/stdsearch?paper=05%282007%29023
http://arxiv.org/abs/hep-th/0701158
http://jhep.sissa.it/stdsearch?paper=05%282007%29043
http://arxiv.org/abs/hep-th/0703260
http://jhep.sissa.it/stdsearch?paper=05%282007%29043
http://arxiv.org/abs/hep-th/0703260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C064010
http://arxiv.org/abs/0704.1239
http://arxiv.org/abs/0708.1270
http://arxiv.org/abs/0803.2555
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111

[33] A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113.

[34] V. Iyer and R.M. Wald, A comparison of Nother charge and euclidean methods for computing
the entropy of stationary black holes, [Phys. Rev. D 52 (1995) 443(] [gr-qc/9503052).

[35] X.-H. Ge and F.-W. Shu, On black hole thermodynamics and entropy function formalism,
brXiv:0804.2123.

[36] R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, |Phys. Rev. D 65 (2002) 084014
[hep-th/0109133.

[37] S. Dutta and R. Gopakumar, On Fuclidean and Notherian entropies in AdS space,
| Rev. D 74 (2006) 044007 [hep-th/0604070].

[38] B. Zwiebach, Curvature squared terms and string theories, |Phys. Lett. B 156 (1985) 31§.

[39] D.G. Boulware and S. Deser, String generated gravity models, [Phys. Rev. Lett. 55 (1985)

[ 2654

[40] M. Lu and M.B. Wise, Black holes with a generalized gravitational action, [Phys. Rev. D 41

[ (1993) 3099 [gr-qc/9301021];

R.C. Myers, Superstring gravity and black holes, |Nucl. Phys. B 289 (1987) 701};

C.G. Callan, R.C. Myers and M.J. Perry, Black holes in string theory, Nucl. Phys. B 311]
[ (1988) 679;

R.C. Myers and J.Z. Simon, Black-hole thermodynamics in Lovelock gravity, |Phys. Rev. D 3§
[ (1988) 2434;

B. Whitt, Spherically symmetric solutions of general second-order gravity, [Phys. Rev. D 38
[ (1988) 300d;

D.L. Wiltshire, Spherically symmetric solutions of Einstein-Maxwell theory with a

Gauss-Bonnet term, [Phys. Lett. B 169 (1986) 36

R.C. Myers and J.Z. Simon, Black hole evaporation and higher-derivative gravity, |Gen. Rel
| Grav. 21 (1989) 761|.

[41] T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions,
| Rev. Lett. 70 (1993) 3684 [hep-th/9305014].

[42] R.C. Myers, Black holes in higher curvature gravity, jgr-qc/9811043.

[43] S. Nojiri, S.D. Odintsov and S. Ogushi, Cosmological and black hole brane world universes in
higher derivative gravity, [Phys. Rev. D 65 (2002) 023521| [nep-th/0108172];
S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative
gravity and new confining-deconfining phases in dual CFT, |[Phys. Lett. B 521 (2001) 87
[Erratum ibid. 542 (2002) 301] [hep-th/0109127;
Y .M. Cho and I.P. Neupane, Anti-de Sitter black holes, thermal phase transition and
holography in higher curvature gravity, IPhys. Rev. D 66 (2002) 024044 [hep-th/0202140].

[44] T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy, |Class. and
| Quant. Grav. 21 (2004) 3447 [gr-qc/0402044)].

[45] S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the
thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 209
[hep-th/9805156];

J. Pawelczyk and S. Theisen, AdSs x S® black hole metric at O(/?), |JHEP 09 (1998) 010
[hep-th/980812§].

— 22 —


http://jhep.sissa.it/stdsearch?paper=10%282001%29034
http://arxiv.org/abs/hep-th/0106113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C4430
http://arxiv.org/abs/gr-qc/9503052
http://arxiv.org/abs/0804.2123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C084014
http://arxiv.org/abs/hep-th/0109133
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C044007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C044007
http://arxiv.org/abs/hep-th/0604070
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB156%2C315
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C55%2C2656
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C55%2C2656
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C3095
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C3095
http://arxiv.org/abs/gr-qc/9301021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB289%2C701
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB311%2C673
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB311%2C673
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD38%2C2434
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD38%2C2434
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD38%2C3000
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD38%2C3000
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB169%2C36
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C21%2C761
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C21%2C761
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C3684
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C3684
http://arxiv.org/abs/hep-th/9305016
http://arxiv.org/abs/gr-qc/9811042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C023521
http://arxiv.org/abs/hep-th/0108172
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB521%2C87
http://arxiv.org/abs/hep-th/0109122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C024044
http://arxiv.org/abs/hep-th/0202140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C3447
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C3447
http://arxiv.org/abs/gr-qc/0402044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB534%2C202
http://arxiv.org/abs/hep-th/9805156
http://jhep.sissa.it/stdsearch?paper=09%281998%29010
http://arxiv.org/abs/hep-th/9808126

[46] G.T. Horowitz and S.F. Ross, Possible resolution of black hole singularities from large-N
gauge theory, UHEP 04 (1998) 015 [hep—th/9803084)].

[47] M. Cveti¢, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in
deSitter and anti-deSitter Einstein-Gauss-Bonnet gravity, [Nucl. Phys. B 628 (2002) 295
[hep-th/0112045).

— 923 —


http://jhep.sissa.it/stdsearch?paper=04%281998%29015
http://arxiv.org/abs/hep-th/9803085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB628%2C295
http://arxiv.org/abs/hep-th/0112045

